Journal of Organometallic Chemistry, 142 (1977) 375–385 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

RHODIUM(I) PHOSPHINE COMPLEXES CONTAINING BIDENTATE UNSATURATED THIO LIGANDS

II *. REACTIONS WITH O2 AND H2

A.W. GAL * and F.H.A. BOLDER

Department of Inorganic Chemistry, Catholic University of Nijmegen, Toernooiveld, Nijmegen (The Netherlands) (Received July 1st, 1977)

Summary

The rhodium(I) complexes $(Ph_3P)_2Rh[Me_2NC(S)NC(S)NMe_2]$, $(Ph_3P)_2Rh[SC-(S)NMe_2]$ and $(Ph_3P)_2Rh[PhNC(S)NMe_2]$ react with O₂ to give 1/1 dioxygen adducts. In solution, trans- $(Ph_3P)_2Rh(O_2)[Me_2NC(S)NC(S)NMe_2]$, cis- and trans- $(Ph_3P)_2Rh(O_2)[SC(S)NMe_2]$ and cis- and trans- $(Ph_3P)_2Rh(O_2)[PhNC(S)-NMe_2]$ are observed. For $(Ph_3P)_2Rh(O_2)[PhNC(S)NMe_2]$, there is a solvent effect on the initial cis-trans ratio and the rate of O=PPh₃ formation. In C₆H₆, O=PPh₃ formation from $(Ph_3P)_2Rh(O_2)[PhNC(S)NMe_2]$ is inhibited by additional PPh₃.

The reaction of $(Ph_3P)_2Rh[Ph_2PC(S)NPh]$ with O_2 in the presence of additional PPh₃ gives $O=PPh_3$ and $cis-(Ph_3P)_2Rh(O_2)[Ph_2P(O)C(S)NPh]$ as the only products. The same complex also can be prepared from $(Ph_3P)_2Rh[Ph_2P(O)-C(S)NPh]$ and O_2 .

Only $(Ph_3P)_2Rh[PhNC(S)NMe_2]$ reacts with H_2 at room temperature to give $(Ph_3P)_2RhH_2[PhNC(S)NMe_2]$, which is a catalyst for cyclohexene hydrogenation.

Introduction

Although a number of studies on the subject have been made, the reaction of RhCl(PPh₃)₃ with molecular oxygen is still not satisfactorily understood [2-4]. The reaction is important because of the increase of catalytic ability of RhCl(PPh₃)₃ in various reactions by traces of oxygen [5-7] and because of the catalytic activity of RhCl(PPh₃)₃ in olefin autoxidation [3,8,9]. One of the reasons for the complexity of the reaction between RhCl(PPh₃)₃ and O₂ is the

* For part I see ref. 1.

ready dissociation of PPh_3 (either as PPh_3 or as $O=PPh_3$) and consequent dimerisation to acquire coordinative saturation [16].

We have investigated the reactivity towards O_2 of the related rhodium(I) complexes $(Ph_3P)_2Rh[Me_2NC(S)NC(S)NMe_2]$ (IA) *, $(Ph_3P)_2Rh[SC(S)NMe_2]$ (IIA), $(Ph_3P)_2Rh[PhNC(S)NMe_2]$ (IIIA) and $(Ph_3P)_2Rh[Ph_2PC(S)NPh]$ (VA), which contain only two PPh₃ groups and a bidentate unsaturated ligand L-L'. The structures of the oxygen adducts $(Ph_3P)_2Rh(O_2)(L-L')$ and their tendency towards O=PPh₃ formation have been studied by IR, ¹H NMR and ³¹P [¹H] NMR. VA contains three phosphorus donor atoms, like RhCl(PPh₃)₃, and in addition to O=PPh₃ formation, oxidation of the P,S-coordinated $Ph_2PC(S)NPh$ to Ph_2P . (O)C(S)NPh is expected. Therefore, we also investigated the reaction between O_2 and $(Ph_3P)_2Rh[Ph_2P(O)C(S)NPh]$ (VIA).

The reactivities of the complexes IA–IIIA and VA towards H_2 have been compared.

Experimental

IR spectra were obtained with Perkin–Elmer 257 and 283 spectrophotometers. 'H NMR spectra were recorded on a Bruker WH-90-FT and ³¹P {¹H} NMR spectra on a Varian XL-100-FT spectrometer. Relative concentrations of O=PPh₃ and the dioxygen adducts were determined by ³¹P NMR with a total measuring time of 15 (1000 transients) or 30 minutes (2000 transients). The observed peak heights, which result from integration over the total measuring time, have been taken proportional to the peak heights at the mid-time of the measurement.

The synthesis of the rhodium(I) complexes $(Ph_3P)_2Rh(L-L')$ (IA-IIIA, VA and VIA) has been described in part I [1]. C, H, and N analyses were performed by the micro-analytical department of this university. Analytical values are given in Table 1.

(A) Dioxygen adducts

Synthesis and isolation

 $(Ph_3P)_2Rh(O_2)[Me_2NC(S)NC(S)NMe_2]$ (I) and $(Ph_3P)_2Rh(O_2)[PhNC(S)NMe_2]$ (III). The dioxygen adducts were prepared from $(Ph_3P)_2Rh(L-L')$, generated in situ in O₂-free benzene by oxidative addition of Me₂NC(S)N(H)C(S)NMe₂ and HN(Ph)C(S)NMe₂ to RhCl(PPh₃)₃ and subsequent dehydrohalogenation with Et₃N, as described in part I [1]. Et₃NHCl was filtered off from the solution, which was red in the first case and orange in the second. On passing through O₂, the colour immediately changed to dark red-brown. Rapid precipitation by addition of n-hexane gave an ochre-yellow powder of I or III. I: ν (O-O) 883(s) cm⁻¹, ν (CNMe₂) 1503(s, br) cm⁻¹; II: ν (O-O) 871(s) cm⁻¹, ν (CNMe₂) 1562 (s, br) cm⁻¹. Recorded in CsI.

 $(Ph_3P)_2Rh(O_2)[SC(S)NMe_2]$ (II). On passing dioxygen through a suspension of 0.2 mmol $(Ph_3P)_2Rh[SC(S)NMe_2]$ in 10 ml of O_2 -free benzene, the solution

^{*} The codes used are the same as in part 1 [1].

TABLE 1

ANAL	YTICAL DATA					
No.	Compound	Colour	Analysis (Found (calcd.) (%))			
			с	н	N	
1	(Ph3P)2Rh(O2)[Me2NC(S)NC(S)NMe2]	ochre-yellow	60.9	5.3	4.9	
			(59.4)	(5.0)	(4.9)	
11	(Ph ₃ P) ₂ Rh(O ₂)[SC(S)NMe ₂]	green-yellow	60.3	4.9	1.7	
			(60.1)	(4.7)	(1.8)	
111	(Ph ₃ P) ₂ Rh(O ₂)[PhNC(S)NMe ₂]	ochre-yellow	(65.2)	(5.1)	(3.4)	
			(64.5)	(4.9)	(3.3)	
VH	(Ph ₃ P) ₂ RhH ₂ [PhNC(S)NMe ₂]	white	66.9	5.6	3.5	
			(66.9)	(5.4)	(3.5)	

turned dark red-brown. Rapid precipitation with n-hexane gave a green-yellow powder of II. $\nu(O-O)$ 881(m, br) cm⁻¹, $\nu(CNMe_2)$ 1529(s, br) cm⁻¹. Recorded in CsI.

 $(Ph_3P)_2Rh(O_2)[Ph_2P(O)C(S)NPh]$ (VI). This complex has been characterised in solution as the product of the reaction of $(Ph_3P)_2Rh[Ph_2PC(S)NPh]$ with O_2 as well as of the reaction of $(Ph_3P)_2Rh[Ph_2P(O)C(S)NPh]$ with O_2 .

The solid dioxygen adducts I–III decompose very slowly in the air. Only after some weeks are $O=PPh_3$ absorptions observed in the IR.

Preparation of solution samples. NMR solution samples of the dioxygen adducts were prepared by dissolving the starting complex $(Ph_3P)_2Rh(L-L')$ in the O₂-free solvent in a glove-box and sealing with a silicone rubber cap. After freezing of the solution, the NMR tube was evacuated via a thin capillary through the rubber cap and one or more equivalents of O₂ were introduced with a syringe. (One equivalent = one mol of O₂ per mol of $(Ph_3P)_2Rh(L-L')$). The frozen solution was rapidly warmed to room temperature and shaken vigorously, resulting in an almost immediate change of colour to orange-brown or redbrown. Solution samples for IR were prepared similarly.

(B) Reactivity of the complexes $(Ph_3P)_2Rh(L-L')$ towards H_2

 $(Ph_3P)_2RhH_2[PhNC(S)NMe_2]$ (VII). On passing H₂ through a O₂-free solution of $(Ph_3P)_2Rh[PhNC(S)NMe_2]$ in benzene at room temperature, the colour of the solution darkened. After 15 min, the Schlenk vessel was closed, and stirring was continued under hydrogen. After 35 min, a white precipitate began to form, and after 5 h the white precipitate of VII was filtered off. $\nu(M-H)$ 2018(m) and 2060(m) cm⁻¹, $\nu(CNMe_2)$ 1562 (s, br) cm⁻¹. Recorded in CsI. The complex is poorly soluble in the common organic solvents. In a similar procedure with Ia, IIa and VA no reaction was observed.

(C) Catalytic activity of VII in cyclohexene hydrogenation

25.5 mg of VII was dissolved in a mixture of 35 ml of benzene and 25 ml of cyclohexene. At 40°C and $p(H_2)$ 1.4 ATA the hydrogen uptake was 3.1 ml/min, from which a turnover number (*TN*) of 8.5×10^{-2} sec⁻¹ was calculated.

Results and discussion

A. Reaction of $(Ph_3P)_2Rh(L-L')$ with O_2

On powdering the rhodium(I) complexes IA, IIa, IIIA and VIA under atmospheric conditions, partial formation of the dioxygen adducts occurs, as evidenced by the appearance of a weak broad IR absorption due to $\nu(O_2)$, the position of which is in agreement with that observed for $\nu(O_2)$ in the dioxygen adducts isolated in the solid state (I, II, III), and for the dioxygen adducts prepared in situ in solution (Table 2). To study the structure of the dioxygen adducts (Ph₃P)₂Rh(O₂)(L-L') and their tendency towards O=PPh₃ formation, they were generated in situ in solution from (Ph₃P)₂Rh(L-L') and one equivalent of O₂ (Experimental).

The ³¹P [¹H} NMR spectra indicate complete conversion of rhodium(I) complexes IA, IIA, IIIA and VIA into the dioxygen adducts I, II, III and VI by reaction with one equivalent of O₂. Besides the formation of O=PPh₃, the formation of trans *-(Ph₃P)₂Rh(O₂)[Me₂NC(S)NC(S)NMe₂] (trans-I), cis-(Ph₃P)₂Rh(O₂)-[SC(S)NMe₂] (cis-II) and a mixture of cis- and trans-(Ph₃P)₂Rh(O₂)[PhNC(S)-NMe₂] (cis-III and trans-III) is observed, in CD₂Cl₂ or in C₆D₆ (Fig. 1A, B). The reaction of VIA with one equivalent of O₂, which has only been investigated in CD₂Cl₂, gives cis-(Ph₃P)₂Rh(O₂)[Ph₂P(O)C(S)NPh] (cis-VI) as the only isomer (Fig. 2). In CH₂Cl₂ slow formation of O=PPh₃ occurs for all four O₂-adducts as is demonstrated by the increase of the sharp O=PPh₃ absorption at δ 24.9 ppm. No other phosphorous resonances of appreciable intensity are observed.

III, for which the cis- and trans-isomer are initially present in comparable concentrations, has been investigated in more detail. A solvent effect on both the initial cis-trans ratio and the rate of O=PPh₃ formation is observed. In C_6H_6 , cis-III is formed in a relative higher concentration than in CH₂Cl₂ and an increased tendency towards O=PPh₃ formation is found (Fig. 1A, B). As judged from the relative peak heights of $O=PPh_3$ and *cis*-III and *trans*-III in CD₂Cl₂, 20 min after preparation of the solution about 5% of III has decomposed, and in C_6D_6 about 15%. After 45 min in CD_2Cl_2 no further decomposition has occurred. whereas in $C_6 D_6$ about 50% has decomposed. The absence of phosphorous resonances other than those of $O=PPh_1$ and *cis*- and *trans*-III, and the simultaneous decrease and increase, respectively, in intensity of the resonances of III and $O=PPh_3$ suggest a simultaneous transfer of both O atoms to both PPh₃ groups. The nature of the rhodium complex formed by this "dissociative oxygen insertion" [10] is unknown. If the reaction of IIIA with one equivalent of O_2 in C_6H_6 is performed in the presence of two moles of PPh₃ per mol of III, remarkable inhibition of $O=PPh_3$ formation occurs: even after 45 min, no $O=PPh_3$ is observed in the 31 P NMR. Under these conditions, isomerisation of *cis*-III to the apparently more stable trans-III is observed. Similarly, cis-II in C₆H₆ in the presence of 2 mol of PPh₃, isomerises to trans-II.

Although the presence of two equivalents of PPh₃ lowers the intensity of $O=PPh_3$ absorption, the ³ P NMR spectrum of VI, formed by reaction of VIA with one equivalent of O_2 in CD_2Cl_2 does not show the pronounced inhibition of $O=PPh_3$ formation observed for III. Within four hours, the initially formed *cis*-

^{*} cis and trans indicate relative position of both PPh3 groups.

Fig. 1. ${}^{31}P{{1H}}$ NMR spectrum of *cis*- and *trans*-(Ph₃P)₂Rh(O₂)[PhNC(S)NMe₂] (*cis*-III and *trans*-III). 20 min after preparation of the solution; (A) in CD₂Cl₂, (B) in C₆D₆ (numbering of the P atoms as in Table 2).

VI is completely converted into the parent rhodium(I) complex VIA and $Q=PPh_3$, as can be seen from the change in colour from orange-brown to intense bright-red and can be followed by IR and ³¹P NMR. The observed change in the IR spectrum is shown in Fig. 3. *Cis*-VI can also be obtained by reaction of VA with O_2 in CH₂Cl₂ in the presence of additional PPh₃. Six mol of PPh₃ per mol of VA have been used. The orange-yellow solution immediately turns orange-brown upon contact with O_2 . The amount of O_2 necessary varied somewhat from one experiment to another. Generally three to four equivalents of O_2 were necessary for complete conversion of the starting complex VA to *cis*-VI. No other phosphorus resonances of appreciable intensity were observed (Fig. 4). Upon prolonged standing of the solution of *cis*-VI so obtained, conversion to VIA and $O=PPh_3$ is observed, as for *cis*-VI prepared directly from VIA. Fig. 5. summarizes the observed reactions of VA and VIA with O_2 . Apparently the proposed initially-formed O_2 adduct (Ph₃P)₂Rh(O₂)[Ph₂PC(S)NPh] (V) is too labile to be detected.

No,	Complex	Solvent	H	31P {111} NMR	-		•	I II NMR
			(cm ⁻¹)	ծ ^դ (րբա)	1/(Rh-P) b (IIz)	Atom or group trans	2J(P(1)-P(2)) _{cis} ^b	r(NMe2) ^v (ppm)
-	trans-(Ph3P)2Rh(O2)[Me2NC(S)N. C(S)NMe2]	cD2Cl2	-	-24,6	101	Eudd		7,29(s)
		C ₆ D ₆	878	-24.2	102			
Ħ	trans-(Ph3P)2Rh(02)[SC(S)NMe2] ^d	C6D6		-20,7	104	PPha		
III	trans.(Ph3P)2Rh(O2)[PhNC(S)NMe2]	CD2Cl2		-19,0	109	PPha		7.93(s)
		C ₆ D ₆	870 ^e	-19,5	110	1		
11	cit.(Ph ₃ P) ₂ Rh(O ₂)[SC(S)NMc ₂]	CD2Cl2	866	-23,5 d	132	S	15	7.67(s)
				-12.2	143	0	15	
Ħ	cit.(Ph3P)_2Rh(O2)[PhNC(S)NMe2]	CD2Cl2		-32.4 /	131 (P(1)) ^K	S or NPh	28	7.48(s)
				-30,1	142 (P(2))	0	28	
		$c_{6}D_{6}$	870 ^e	32,7 /	130 (P(1))		28	
				-30,2	143 (P(2))		28	
17	cit.(Ph3P)2Rh(O2)[Ph2P(0)C(S)NPh]	CD2Cl2	869	-37,6	142 (P(1)) ^h	С	29	
				-30,3	140 (P(2))	0	20	
				-31,6				
				(0=PPh2)				
	0=PPh ₃	CD2Cl2		-24,9				
		$c_6 D_6$		-21.0				
a Rel. to ainglet, one $\nu(0$	 O=P(OMe)_3(TMP) int. ref.; values 10.2 ppm, b Observed in the presence of two equivalents of 2) could be assigned. ⁽³¹P NMR parameters results) 	t PPh3. ^C To a C ₆	between tw D6 solution lyses, ^g Nui	o P atoms in the su of cis- and trans-(1 mbering of the P at	une complex ±0,0, Ph3P)2Rh(O2)[Ph1 toms as in Fig. 1A	3 ppm, $b J valNC(S)NMe_2] aand 1B, h Nui$	ues ±1 Hz. Rel. to TM nd two equivalents of P mbering of the P atoms	S int. ref; s = Ph3 only as in

380

•

TABLE 2

Fig. 2. ${}^{31}P{{1H}}NMR$ spectrum of *cis*-(Ph₃P)₂Rh(O₂)[Ph₂P(O)C(S)NPh] (*cis*-V1) in CD₂Cl₂. Prepared from (Ph₃P)₂Rh[Ph₂P(O)C(S)NPh] (V1A). 20 min after preparation of the solution (numbering of P atoms as in Table 2).

and a very fast transfer of oxygen to Ph_3P as well as Ph_2P occurs. If both O atoms are indeed simultaneously transferred to two coordinating P atoms, two routes (A and B in Fig. 5) can be distinguished. If only transfer of oxygen via route A occurs, a maximum of two equivalents of O_2 would be absorbed. The high intensity of the $O=PPh_3$ resonance (Fig. 4) and the need for three to four equivalents of O_2 to obtain quantitative conversion seem to indicate that route B also occurs to some extent.

B. Spectra and structures of $(Ph_3P)_2Rh(O_2)(L-L')$

The IR, ³¹P NMR and some ¹H NMR parameters of the O₂ adducts are given in Table 2. In the IR the observed values of $\nu(O_2)$ in solution are as expected for a five coordinate TBP rhodium(I) complex of class T [11], for which values of $\nu(O_2)$ ranging from 833–890 cm⁻¹ [12,13] have been reported. For the square planar RhCl(PCy₃)₂(O₂) (class S)₃ the much higher $\nu(O_2)$ of 993 cm⁻¹ has been ascribed to a weaker M–O₂ π -backbonding in the square-planar geometry [11]. The chelate absorptions in solution are virtually the same as those assigned to

Fig. 3. Formation of $(Ph_3P)_2Rh[Ph_2P(O)C(S)NPh]$ (VIA) from $cis \cdot (Ph_3P)_2Rh(O_2)[Ph_2P(O)C(S)NPh]$ -($cis \cdot VI$) and two moles of PPh₃ in CD₂Cl₂. Time dependent IR spectrum: A = 70 min., B = 150 min, and C = 220 min, after sampling (temp. = 40°C). ν (C=N) in $cis \cdot VI = 1525$ cm⁻¹. ν (C=N) in VIA = 1511 cm⁻¹. ν (P=O) in $cis \cdot VI = 1130$ cm⁻¹; ν (P=O) in VIA = 1133 cm⁻¹. r(PCS) is obscured by solvent absorption. O=PPh₃ absorptions increase (1592, 1192 and 1119 cm⁻¹) and ν (O₂) decreases.

the bidentate chelates L--L' in the parent rhodium(I) complexes. ν (P=O) in *cis*-VI (1130 cm⁻¹, CH₂Cl₂) (Fig. 3) indicates O-coordination of Ph₂P(O)C(S)-NPh as in VIA (ν (P=O) = 1133 cm⁻¹, CH₂Cl₂) for which O-coordination has been discussed in part I [1].

In the observed *trans*-isomers both Ph₃P groups are equivalent, and one doublet due to coupling with Rh (I = 1/2, 100% abundance) is observed (Table 2). In the *cis*-isomers both Ph₃P groups (P(1) and P(2)) are inequivalent, and two pairs of doublets are observed due to ¹J(Rh–P) and ²J(P(1)–P(2))_{cis} (Fig. 1 and 2). In *cis*-VI the ³¹P absorption of the O-coordinated O=PPh₂ group coincides with one of the Ph₃P lines (Fig. 2). Its position is only slightly different from that observed in (Ph₃P)₂Rh[Ph₂P(O)C(S)NPh] (δ –28.6 ppm) and (CO)-(Ph₃P)Rh[Ph₂P(O)C(S)NPh] (δ –33.1 ppm). For III and VI two *cis*-isomers are possible (neglecting different enantiomers). Figure 6 summarizes the structures. The observed isomerization is also indicated. Because within the rhodium(I) complex (Ph₃P)₂Rh[Ph₂P(O)C(S)NPh] [1] the value of ¹J(Rh–P) for Ph₃P *trans* to O (202 Hz) is larger than for Ph₃P *trans* to S (170 Hz), we tentatively assign ¹J(Rh–P) ~140 Hz to Ph₃P *trans* to O and ¹J(Rh–P) ~130 Hz to P *trans*

Fig. 4. ${}^{31}P{{1H}}$ NMR spectrum of *cis*-(Ph₃P)₂Rh(O₂)[Ph₂P(O)C(S)NPh] (*cis*-VI) in CD₂Cl₂, Prepared from (Ph₃P)₂Rh[Ph₂PC(S)NPh] (VA) and six moles of PPh₃. 20 min, after preparation of the solution. Unreacted VA is indicated (numbering of P atoms as in table 2).

to S (or NPh in *cis*-III). This implies that in *cis*-VI both Ph₃P groups have O *trans* (isomer (a), Fig. 6). This assignment is in accord with the absence of a ${}^{3}J(P-Rh-O-PPh_{2})$ expected for P *trans* to S in isomer (b), by analogy to $(Ph_{3}P)_{2}Rh[Ph_{2}P(O)C(S)NPh]$ [1]. So (a) is the most probable structure for *cis*-VI.

Fig. 5. The formation of cis-(Ph₃P)₂Rh(O₂)[Ph₂P(O)C(S)NPh] (cis-VI) from (Ph₃P)₂Rh[Ph₂PC(S)NPh] (VA) and (Ph₃P)₂Rh[Ph₂P(O)C(S)NPh] (VIA): reaction scheme.

Fig. 6. Structures and observed isomerisation of the dioxygen adducts (n.o. = not observed).

C. Reaction of $(Ph_3P)_2Rh(L-L')$ with H_2

Of the complexes investigated, only IIIA reacts with H_2 at room temperature. The two $\nu(Rh-H)$ absorptions (2060, 2018 cm⁻¹, CsJ) in $(Ph_3P)_2RhH_2[PhNC-(S)NMe_2]$ (VII) indicate a *cis*-psoition for both hydrides. The observed chelate absorptions, except for $\nu(CNMe_2)$ (1525 cm⁻¹, CsI), are virtually the same as for PhN, S-coordinated thioureide in $(Ph_3P)_2Rh[PhNC(S)NMe_2]$. ($\nu(CNMe_2) = 1548$ cm⁻¹, CsI). Because of the low solubility no useful NMR spectrum could be obtained. By analogy to the earlier reported *trans*-(Ph_3P)_2-RhH_2(ArNNNAr) and *trans*-(Ph_3P)_2RhH_2(O_2CR), both Ph_3P groups probably will be in *trans* position [14,15]. VII is not sensitive to O₂ in solution. Stirring VII in an ethylene-saturated solution results in hydrogenation and formation of (Ph_3P)_2Rh[PhNC(S)NMe_2]. The activity of the complex in cyclohexene hydrogenation (*TN* 8.5 \times 10⁻² sec⁻¹) is about 16% of that we have found for RhCl $(PPh_3)_3$ under the same conditions. Activity in olefin hydrogenation also has been reported for *trans*- $(Ph_3P)_2RhH_2(PhNNNPh)$ and *trans*- $(Ph_3P)_2RhH_2(O_2CR)$ [13,15].

D. Conclusions

The investigated complexes $(Ph_3P)_2Rh(L-L')$ are more reactive towards O_2 than H_2 . Replacement of PhN in $(Ph_3P)_2Rh[PhNC(S)NMe_2]$ (IIIA) by S to give $(Ph_3P)_2Rh[SC(S)NMe_2]$ (IIA) makes the Rh centre unreactive towards H_2 at room temperature. The replacement of PhN by S also has an effect on the *cis*-trans ratio observed for the dioxygen adduct.

In the case of IIIA, *cis*- and *trans*-III are formed initially, whereas IIA initially forms only *cis*-II. We think this is a kinetic effect, because in both cases the *trans*-isomer if found to be the most stable. The stability of the *trans*-isomer is probably related to the relief of steric hindrance between both Ph₃P groups in this isomer. A marked effect of L-L' on the lability of $(Ph_3P)_2Rh(O_2)(L-L')$ towards O=PPh₃ formation is observed: for L-L' = Ph₂PC(S)NPh the initially formed dioxygen adduct is too labile to be detected and oxygen transfer to Ph₃P as well as Ph₂PC(S)NPh is found.

The nature of the inhibition of $O=PPh_3$ formation from *cis*-III by additional PPh₃ will be subject of further investigations.

Acknowledgement

We thank Prof. Dr. Ir. J.J. Steggerda and Dr. H.L.M. van Gaal for their continuous interest and useful discussions, Mr. P.J.J. Koonen for performing C, H, N analyses, Mr. J. van Kessel for recording ³¹P NMR spectra, Mr. J.W. Gosselink and Mr. H.P.M.M. Ambrosius for experimental help and Mr. M.H.J.M. de Croon for the kinetic measurements. The investigations were supported in part by the Netherlands Foundation for Chemical Research (SON), with financial aid from the Netherlands Organization for Pure Research (ZWO).

References

- 1 A.W. Gal, J.W. Gosselink and F.A. Vollenbroek, J. Organometal. Chem., 142 (1977) 357.
- 2 V.J. Choy and C.J. O'Connor, Coord. Chem. Rev., 9 (1972/73) 145.
- 3 C.W. Dudley, G. Read and P.J.C. Walker, J. Chem. Soc. Dalton, (1974) 1926.
- 4.G.L. Geoffrey and M.E. Keeney, Inorg. Chem., 16 (1977) 205.
- 5 R.L. Augustine and J.F. van Peppen, Chem. Commun., (1970) 495, 571.
- 6 K.W. Barnett, D.L. Beach, D.L. Garin and L.A. Kaempfe, J. Amer. Chem. Soc., 96 (1974) 7127.
- 7 H. van Bekkum, F. Van Rantwijk and T. van de Putte, Tetrahedron Lett., (1969) 1.
- 8 K. Takao, M. Wagaku, Y. Fujiwara, T. Imanaka and S. Teranishi, Bull. Chem. Soc. Japan, 43 (1970) 3898.
- 9 J.F. Farrar, D. Holland and P.J. Milner, J. Chem. Soc. Dalton, (1975) 815.
- 10 J.P. Birk, J. Halpern and A.L. Pickard, J. Amer. Chem. Soc., 90 (1968) 4491.
- 11 H.L.M. van Gaal and F.L.A. van den Bekerom, J. Organometal Chem., 134 (1977) 237.
- 12 J.S. Valentine, Chem. Rev., (1973) 235.
- 13 W.H. Knoth, Inorg. Chem., 12 (1973) 38.
- 14 K.R. Laing, S.D. Robinson and M.F. Uttley, J. Chem. Soc. Dalton, (1974) 1205.
- 15 Z. Nagy-Magos, B. Heil and L. Markő, Trans. Met. Chem., 1 (1976) 215.
- 16 M.J. Bennet and P.B. Donaldson, J. Amer. Chem. Soc., 93 (1971) 3307.